
GPU-BASED PARALLELIZATION ON
PRINCIPAL COMPONENTS TRANSFORMATION

Victor J. D. Tsai and Chia-Wei Tsai

 Department of Civil Engineering, National Chung Hsing University, Taiwan, jdtsai@nchu.edu.tw

ABSTRACT ... Techniques in band selection are usually used to select a subset of highly correlated data without losing
their physical meaning for dimensionality reduction purpose. Among these techniques, principal components
transformation (PCT) is the most commonly used in finding a new set of orthogonal bases (principal axes) that better
captures spectral characteristics with the variance of transformed data in descending order. Considering the high
parallel computing capability of current multi-core Graphics Processing Units (GPUs), this research aims on developing
a GPU-based parallel processing approach for PCT using C/C++ and NAVIDIA’s CUDA. A 191-band HYDICE
hyperspectral image was used in the experiments for illustrating that the developed approach accelerates PCT in an
overall speedup of 30 through the high performance computing capability of GPU.

KEY WORDS: Principal Components, Parallel Computing, GPU, CUDA, Hyperspectral Imagery

1. INTRODUCTION

There is always encountered with problems of high
correlation among neighbouring spectral bands, which
deliver similar spectral information, when using
hyperspectral imagery with hundreds of spectral bands.
Techniques in band selection are usually used to select a
subset of these highly correlated data without losing their
physical meaning for dimensionality reduction purpose
(Yang et al., 2011; Ifarraguerri, 2004; Bajcsy & Groves,
2004; Huang & He, 2005; Du & Yang, 2008). Among
these techniques, principal components transformation
(PCT) is the most commonly used in finding a new set of
orthogonal bases (principal axes) that better captures
spectral characteristics with the variance of transformed
data in descending order (Richards & Jia, 1999;
Schowengerdt, 1997). However, PCT demands intensive
computations for the covariance matrix of the original
data set and the solution for corresponding eigenvalues
and eigenvectors, which are too time consuming in serial
mode of central processing unit (CPU).

Recently, graphics processing units (GPUs) are of
great interest to high-performance computing (HPC)
community for strong parallel processing capability,
multithread, many-core processors with tremendous
computational speed, and extremely high memory
bandwidth (Tao et al., 2012; Nickolls & Daily, 2010).
Although GPUs are originally specified for computer
graphics, they are now popular for general-purpose
computing and HPC for remote sensing (Yan et al., 2011;
McCool, 2007; Lee et al., 2011; Plaza et al., 2011).
Meanwhile, with the NVIDIA’s release of Compute
Unified Device Architecture (CUDA) in 2006 (NVIDIA,
2011a, 2011b; Harris, 2007), image processing
algorithms can be implemented in C/C++ language and
executed in parallel to a large number of threads in GPU
hardware without the use of graphics API (application
program interface) such as OpenGL and Direct X. A
CUDA compliant GPU exposes three novel hardware
features: general load-store memory architecture, on-chip

shared memory, and thread synchronization (Senguta et
al., 2007). Hence, CUDA provides highly data-parallel
processing for GPUs with better performance than
existing parallel approaches based on SIMD (single
instruction multiple data) or MIMD (multiple instruction
multiple data) stream structures.

This research aims to approach an efficient application
of parallel computing algorithms for PCT using CUDA
compliant GPUs. The remainder of this paper is
organized as follows: Section 2 reviews the computing
principles in PCT, while Section 3 provides an overall
description on the parallelization of basic operations in
PCT using CUDA. The experimental results from the
PCT of a 191-band HYDICE hyperspectral imagery by
parallel GPU approaches and serial CPU approaches are
presented and discussed in Section 4. Finally, the
conclusions are drawn in Section 5 with the suggestions
on future work.

2. COMPUTING PRINCIPLES IN PCT

PCT is a feature space transformation designed to
remove the high spectral redundancy in multispectral and
hyperspectral image bands with high correlation due to
material spectral correlation, topography, and sensor band
overlap (Richards & Jia, 1999; Schowengerdt, 1997;
Ready & Wintz, 1973). For a pixel x  tLfff 21 (t :

transpose operation) in an L-band image f with
NMK  pixels in each band, PCT is a zero-

correlation rotational transform of the following type with
image-specific matrix G,

 y = G x (1),

subject to the constraint that the covariance matrix of the
transformed pixel data in the new y space is diagonal. It is
desired to find the linear transformation matrix G in the
following procedures (Schowengerdt, 1997; Richards &
Jia, 1999):

A. Computing the mean vector m in the original x space:





K

i
ix

K
m

1

1 (2),

B. Computing the covariance matrix Cx:

  






K

i

t
iix mxmx

K
C

11

1 (3),

C. Solving for the eigenvalues and eigenvectors of Cx:

0 ICx  (4),

where I is the (diagonal) identity matrix. It is noted
that the eigenvalues are sorted in descending order,
i.e.,

L  21
, each eigenvalue is equal to the

variance of the respective band in y space, and the
sum of all the eigenvalues is equal to the trace of Cx.
Then, the eigenvector

ig for the ith eigenvalue
i

can be determined by solving for the following
equation:

  0 iix gIC  (5),

where  tiLiii gggg 21 . However, the

equation systems in Eq. (5) for each eigenvalue are
not independent. The orthogonality constraint of the
resulting matrix G adds the following characteristic
equation that can be solved simultaneously with Eq.
(5) for

ig ,

122

2
2
1  iLii ggg  (6).

As results, the transformation matrix G is composed:









































LLLL

L

L

t
L

t

t

ggg

ggg

ggg

g

g

g

G











21

22221

11211

2

1

 (7).

D. Transform the original image using Eq. (1) with the

first P (≦L) components. A linear contrast stretch
may apply to scale the dynamic range of the
transformed image into 8-bit data:

)(
255

min
minmax

yy
yy

yout 


 (8).

3. PARALLELIZATION OF PCT IN CUDA

To alleviate the computational burden of PCT, it is
attractive and desirable to implement such algorithms in

parallel using CUDA compliant GPUs. In CUDA
programs, a large number of threads can be dynamically
executed in parallel Kernel functions that run in scalable
GPU cores through three layers of hierarchical
architectures: thread, block, and grid (NVIDIA, 2011a,
2011b). CUDA programs thus provide heterogeneous
CPU+GPU coprocessing for achieving optimal
performance of applications that use the right core for a
right job: a single-latency optimized CPU core for serial
portions and throughput-optimized GPU cores for parallel
portions of code (Nickolls & Daily, 2010).

Figure 1 describes the flowchart of our CPU+GPU
PCT implementation using CUDA v4.1. The CPU serial
codes are designed to load the L-band hyperspectral
imagery, with NMK  pixels in each band, into host
(CPU) memory and solve for the L eigenvalues and
eigenvectors of its corresponding covariance matrix Cx.
The GPU parallel codes are designed to map the imagery
data onto the device (GPU) shared memory in an L’K’
matrix X for the computations of the mean vectors,
covariance matrix, and final linear transformation, where
L’=Ceiling(L/16)16 and K’= Ceiling(K/16)16 for
optimal parallelization, with Ceiling(r) representing the
smallest integer that is greater than or equal to r.
Considering the examples in (NVIDIA, 2011a, 2011b),
five Kernels of basic arithmetic and matrix operations in
PCT are designed as described in the following.

A. Kernel 1: computation of the sum of a 1-D array

A block, consisting of 1024 threads, is scheduled for
each band of the imagery. The tree reduction approach
(Harris, 2007) for computing the sum of all elements in a
1-D array was applied for each band in Ceiling(K’/1024)
iterations.

B. Kernel 2: division of all elements by a constant

The division of all elements in a 1-D array with K’
elements by a constant D can be parallelized by using
1024 threads in Ceiling(K’/1024) iterations.

Therefore, the computation of the mean value for each
band of the imagery is a combination of Kernels 1 and 2.

C. Kernel 3: subtraction of a constant for all elements

Similar to Kernel 2, subtraction of a constant D from
all elements in a 1-D array with K’ elements in GPU
shared memory is also parallelized by using 1024 threads
in Ceiling(K’/1024) iterations.

The mean value for the ith band of the imagery, i.e., mi,
is then subtracted from each element in the ith row of the
X matrix using Kernel 3, resulting in the mean-shifted
matrix X’.

D. Kernel 4: transpose of a matrix

As described previously in Step B of PCT computing
principles in Sec. 2, the computation of the covariance
matrix is then decomposed into three steps in the
programs:

1. Transpose the X’ matrix as X’t,
2. Multiply X’ with X’t, resulting as Cx,
3. Divide each element of Cx by K-1.

Figure 1. Flowchart of our CPU+GPU implementation.

Kernel 4 is designed to transpose the X’ matrix in
GPU’s shared memory by using Ceiling(L’/16)

Ceiling(K’/16) blocks, each with 1616 threads for the
parallel swapping in symmetric elements about the
diagonal (NVIDIA, 2011b).

E. Kernel 5: matrix multiplication

The multiplication of the X’ and X’t matrices is
implemented in Kernel 5 using Ceiling(L’/16)

Ceiling(K’/16) and Ceiling(K’/16)Ceiling(L’/16) blocks,
each with 1616 threads respectively, following the
computational notations in matrix multiplication. Figure
2 shows the schematic model for the multiplication of a
matrix A (64128) and its transpose matrix B (12864)
and the resulting matrix C (6464), using sub-blocks of
1616 threads in parallel computation.

Figure 2. Scheme for parallel matrix multiplication.

The computation of the L’L’ covariance matrix Cx
of the L-band imagery is then a combination of Kernels 4,
5, and 3 (with constant value of K-1) in the GPU device.
The solution for the eigenvalues of Cx is currently done in
serial CPU model by applying QR decomposition
(Francis, 1961; Burden & Faires, 2011), followed by a
quicksort (Hoare, 1962) in descending order. The
eigenvectors for the first P (≦L) bands are also solved in
CPU host for compositing a PL’ transformation matrix
G. The selected P-band component of G matrix is then
mapped onto the GPU device for linear transformation in
Eq. (1) using Kernel 5, followed by a linear contrast
stretch in Eq. (8) using Kernels 3 and 2.

4. EXPERIMENTAL RESULTS

The programs were developed using Microsoft Visual
C++ and CUDA v4.1 under Microsoft Windows 7 64bits
environment. In addition to the CPU+GPU coprocessing
programs for PCT, the counterpart codes for CPU serial
operations are also implemented for performance
comparison in an ASUS ESC1000 computer with
hardware specificity shown in Table 1. A 191-band, in
the size of 1280307, 16-bit HYDICE image of
Washington DC Mall from Purdue University (https://
engineering.purdue.edu/~biehl/MultiSpec/) was used in
the experiment.

The performances of our CPU+GPU parallelization
and CPU serial process on PCT are shown in Table 2.
The parallelization on the key steps A, B, and D can get
speedup of up to 86, 58, and 94, respectively, with
overall speedup of 30, compared to the CPU-based
process. The transformed images from both CPU+GPU
parallelization and CPU serial process were also
examined with the root-mean-squared error, correlation
coefficient, and mean absolute error, using the result from
the CPU serial process as reference. It is shown that
corresponding bands from both processes are identical
due to unique eigenvectors solved in the same routines.

5. CONCLUSIONS

This research adapts NVIDIA’s Compute Unified
Device Architecture (CUDA) in designing CPU+GPU
parallelized programs for principal components
transformation (PCT), and compares the computational
efficiency with the counterpart CPU single-thread
programs. We focused on the parallelization of basic
arithmetic and matrix operations in PCT. A 191-band
1280307 HYDICE hyperspectral image was used in the
experiments for illustrating that the CPU+GPU approach
accelerates PCT operation in an overall speedup of 30
through the parallel computing capability of GPU.
Individual parallelized steps may get speedup of up to
86, 58, and 94 for computing mean vectors,
covariance matrix, and linear transformation, respectively.
The concept in parallelism of basic operations is
anticipated for near real-time high performance
processing of volumetric image data in remote sensing
applications.

Table 1. Hardware specification in the experiment.

Item CPU GPU

Brand/Model Intel Xeon W3530 NVIDIA Tesla C0270

Number of Cores 6 448

Core Frequency 2.8 GHz 1.15 GHz

Memory 24576 MB DDR3 2688 MB GDDR5

Memory Bandwidth 25.6 GB/s 144 GB/s

Table 2. Performance comparison on HYDICE imagery.

Step Computations
CPU
(sec)

GPU
(sec)

Speedup

A Mean vector 1.732 0.020 86.60

B Covariance matrix 72.097 1.225 58.86

C Eigenvalues & eigenvectors 0.107 0.112* -

D
Transformation of the first 16
PCs with contrast stretch

8.681 0.092 94.36

 Memory mapping & others 0.101 1.254 -

Overall 82.718 2.703 30.60
* : executed on CPU with time for memory mapping between host and
device

ACKNOWLEDGEMENTS

This research was supported by the National Science
Council, Executive Yuan, Taiwan, under the contract
grant NSC 100-2221-E-005-075-MY2.

REFERENCES

Bajcsy, B. and P. Groves, 2004. Methodology for
hyperspectral band selection. Photogramm. Eng. Remote
Sens., 70(7), pp. 793-802.

Burden, R. L. and J. D. Faires, 2011. Numerical Analysis,
9th ed., Brooks/Cole Cengage Learning.

Du, Q. and H. Yang, 2008. Similarity-based unsupervised
band selection of hyperspectral image analysis. IEEE
Geosci. Remote Sens. Lett., 5(4), pp. 564-568.

Francis, J. G. F., 1961. The QR Transformation. The
Computer Journal, 4(3), pp. 265-271.

Harris, M.,2007. Parallel prefix sum (Scan) with CUDA,
NVIDIA.

Hoare, C. A. R., 1962. Quicksort. The Computer Journal,
5(1), pp. 10-16.

Huang, R. and M. He, 2005. Band selection based on
feature weighting for classification of hyperspectral
imagery. IEEE Geosci. Remote Sens. Lett., 2(2), pp. 156-
159.

Ifarraguerri, A., 2004. Visual method for spectral band
selection. IEEE Geosci. Remote Sens. Lett., 1(2), pp. 101-
106.

Lee, C. A., S. D. Gasster, A. Plaza, C-I Chang, and B.
Huang, 2011. Recent development in high performance
computing for remote sensing: A review. IEEE J. of
Selected Topics in Applied Earth Observations and
Remote Sens., 4(3), pp. 508-527.

McCool, M. D., 2007. Signal processing and general-
purpose computing on GPUs. IEEE Signal Process. Mag.,
24(3), pp. 109-114.

Nickolls, J. and W. J. Daily, 2010. The GPU computing
era. IEEE Micro, 30(2), pp. 56-69.

NVIDIA, 2011a. NVIDIA CUDA C Programming Guide,
Version 4.1.

NVIDIA, 2011b. NVIDIA GPU Computing SDK, Version
4.1.

Plaza, A., Q. Du, Y-L Chang, and R. L. King, 2011. High
performance computing for hyperspectral remote sensing.
IEEE J. of Selected Topics in Applied Earth Observations
and Remote Sens., 4(3), pp. 528-544.

Ready, P. J. and P. A. Wintz, 1973. Information
extraction, SNR improvement and data compression in
multispectral imagery. IEEE Trans. on Commun., COM-
21(10), pp. 1123-1131.

Richards, J. A. and X. Jia, 1999. Remote Sensing Digital
Image Processing: An Introduction, 3rd ed., Springer.

Schowengerdt, R. A., 1997. Remote sensing: Models and
methods for image processing, Academic Press.

Senguta, S., M. Harris, Y. Zhang, and J. D. Owens, 2007.
Scan primitives for GPU computing. In: Graphics
Hardware 2007, San Diego, CA, USA.

Tao, Z., Y. Luo, K. Guo, and S. Zhao, 2012. Feature
extraction of hyperspectral remote sensing in parallel
computing research based on GPU. In: The 4th Int. Conf.
on Computational and Information Sciences (ICCIS
2012), Chongqing, China, pp. 570-573.

Yang, H., Q. Du, and G. Chen, 2011. Unsupervised
Hyperspectral Band Selection Using Graphics Processing
Units. IEEE J. of Selected Topics in Applied Earth
observation and Remote Sensing, 4(3), pp. 660-668.

