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ABSTRACT ... Techniques in band selection are usually used to select a subset of highly correlated data without losing 
their physical meaning for dimensionality reduction purpose. Among these techniques, principal components 
transformation (PCT) is the most commonly used in finding a new set of orthogonal bases (principal axes) that better 
captures spectral characteristics with the variance of transformed data in descending order. Considering the high 
parallel computing capability of current multi-core Graphics Processing Units (GPUs), this research aims on developing 
a GPU-based parallel processing approach for PCT using C/C++ and NAVIDIA’s CUDA. A 191-band  HYDICE 
hyperspectral image was used in the experiments for illustrating that the developed approach accelerates PCT in an 
overall speedup of 30 through the high performance computing capability of GPU. 
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1. INTRODUCTION 

There is always encountered with problems of high 
correlation among neighbouring spectral bands, which 
deliver similar spectral information, when using 
hyperspectral imagery with hundreds of spectral bands.  
Techniques in band selection are usually used to select a 
subset of these highly correlated data without losing their 
physical meaning for dimensionality reduction purpose 
(Yang et al., 2011; Ifarraguerri, 2004; Bajcsy & Groves, 
2004; Huang & He, 2005; Du & Yang, 2008). Among 
these techniques, principal components transformation 
(PCT) is the most commonly used in finding a new set of 
orthogonal bases (principal axes) that better captures 
spectral characteristics with the variance of transformed 
data in descending order (Richards & Jia, 1999; 
Schowengerdt, 1997). However, PCT demands intensive 
computations for the covariance matrix of the original 
data set and the solution for corresponding eigenvalues 
and eigenvectors, which are too time consuming in serial 
mode of central processing unit (CPU).   

Recently, graphics processing units (GPUs) are of 
great interest to high-performance computing (HPC) 
community for strong parallel processing capability, 
multithread, many-core processors with tremendous 
computational speed, and extremely high memory 
bandwidth (Tao et al., 2012; Nickolls & Daily, 2010). 
Although GPUs are originally specified for computer 
graphics, they are now popular for general-purpose 
computing and HPC for remote sensing (Yan et al., 2011; 
McCool, 2007; Lee et al., 2011; Plaza et al., 2011). 
Meanwhile, with the NVIDIA’s release of Compute 
Unified Device Architecture (CUDA) in 2006 (NVIDIA, 
2011a, 2011b; Harris, 2007), image processing 
algorithms can be implemented in C/C++ language and 
executed in parallel to a large number of threads in GPU 
hardware without the use of graphics API (application 
program interface) such as OpenGL and Direct X. A 
CUDA compliant GPU exposes three novel hardware 
features: general load-store memory architecture, on-chip 

shared memory, and thread synchronization (Senguta et 
al., 2007). Hence, CUDA provides highly data-parallel 
processing for GPUs with better performance than 
existing parallel approaches based on SIMD (single 
instruction multiple data) or MIMD (multiple instruction 
multiple data) stream structures. 

This research aims to approach an efficient application 
of parallel computing algorithms for PCT using CUDA 
compliant GPUs. The remainder of this paper is 
organized as follows: Section 2 reviews the computing 
principles in PCT, while Section 3 provides an overall 
description on the parallelization of basic operations in 
PCT using CUDA. The experimental results from the 
PCT of a 191-band HYDICE hyperspectral imagery by 
parallel GPU approaches and serial CPU approaches are 
presented and discussed in Section 4. Finally, the 
conclusions are drawn in Section 5 with the suggestions 
on future work. 
 

2. COMPUTING PRINCIPLES IN PCT 

PCT is a feature space transformation designed to 
remove the high spectral redundancy in multispectral and 
hyperspectral image bands with high correlation due to 
material spectral correlation, topography, and sensor band 
overlap (Richards & Jia, 1999; Schowengerdt, 1997; 
Ready & Wintz, 1973). For a pixel x  tLfff 21  (t : 

transpose operation) in an L-band image f with 
NMK   pixels in each band, PCT is a zero-

correlation rotational transform of the following type with 
image-specific matrix G,  

 
 y = G x (1), 
 
subject to the constraint that the covariance matrix of the 
transformed pixel data in the new y space is diagonal. It is 
desired to find the linear transformation matrix G in the 
following procedures (Schowengerdt, 1997; Richards & 
Jia, 1999): 
 



 

A. Computing the mean vector m in the original x space:  
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B. Computing the covariance matrix Cx: 
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C. Solving for the eigenvalues and eigenvectors of Cx: 

 
0 ICx   (4), 

 
where I is the (diagonal) identity matrix. It is noted 
that the eigenvalues are sorted in descending order, 
i.e., 

L  21
, each eigenvalue is equal to the 

variance of the respective band in y space, and the 
sum of all the eigenvalues is equal to the trace of Cx. 
Then, the eigenvector 

ig  for the ith eigenvalue 
i  

can be determined by solving for the following 
equation: 
 
  0 iix gIC   (5), 

 
where  tiLiii gggg 21 . However, the 

equation systems in Eq. (5) for each eigenvalue are 
not independent. The orthogonality constraint of the 
resulting matrix G adds the following characteristic 
equation that can be solved simultaneously with Eq. 
(5) for 

ig , 
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As results, the transformation matrix G is composed: 
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 (7). 

 
D. Transform the original image using Eq. (1) with the 

first P (≦L) components. A linear contrast stretch 
may apply to scale the dynamic range of the 
transformed image into 8-bit data: 
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3. PARALLELIZATION OF PCT IN CUDA 

To alleviate the computational burden of PCT, it is 
attractive and desirable to implement such algorithms in 

parallel using CUDA compliant GPUs. In CUDA 
programs, a large number of threads can be dynamically 
executed in parallel Kernel functions that run in scalable 
GPU cores through three layers of hierarchical 
architectures: thread, block, and grid (NVIDIA, 2011a, 
2011b). CUDA programs thus provide heterogeneous 
CPU+GPU coprocessing for achieving optimal 
performance of applications that use the right core for a 
right job: a single-latency optimized CPU core for serial 
portions and throughput-optimized GPU cores for parallel 
portions of code (Nickolls & Daily, 2010). 

Figure 1 describes the flowchart of our CPU+GPU 
PCT implementation using CUDA v4.1. The CPU serial 
codes are designed to load the L-band hyperspectral 
imagery, with NMK   pixels in each band, into host 
(CPU) memory and solve for the L eigenvalues and 
eigenvectors of its corresponding covariance matrix Cx. 
The GPU parallel codes are designed to map the imagery 
data onto the device (GPU) shared memory in an L’K’ 
matrix X for the computations of the mean vectors, 
covariance matrix, and final linear transformation, where 
L’=Ceiling(L/16)16 and K’= Ceiling(K/16)16 for 
optimal parallelization, with Ceiling(r) representing the 
smallest integer that is greater than or equal to r. 
Considering the examples in (NVIDIA, 2011a, 2011b), 
five Kernels of basic arithmetic and matrix operations in 
PCT are designed as described in the following. 
 
A. Kernel 1: computation of the sum of a 1-D array 

A block, consisting of 1024 threads, is scheduled for 
each band of the imagery. The tree reduction approach 
(Harris, 2007) for computing the sum of all elements in a 
1-D array was applied for each band in Ceiling(K’/1024) 
iterations.  

B. Kernel 2: division of all elements by a constant 

The division of all elements in a 1-D array with K’ 
elements by a constant D can be parallelized by using 
1024 threads in Ceiling(K’/1024) iterations.  

Therefore, the computation of the mean value for each 
band of the imagery is a combination of Kernels 1 and 2. 

C. Kernel 3: subtraction of a constant for all elements  

Similar to Kernel 2, subtraction of a constant D from 
all elements in a 1-D array with K’ elements in GPU 
shared memory is also parallelized by using 1024 threads 
in Ceiling(K’/1024) iterations.  

The mean value for the ith band of the imagery, i.e., mi, 
is then subtracted from each element in the ith row of the 
X matrix using Kernel 3, resulting in the mean-shifted 
matrix X’. 

D. Kernel 4: transpose of a matrix 

As described previously in Step B of PCT computing 
principles in Sec. 2, the computation of the covariance 
matrix is then decomposed into three steps in the 
programs: 

1. Transpose the X’ matrix as X’t, 
2. Multiply X’ with X’t, resulting as Cx, 
3. Divide each element of Cx by K-1. 



 

 
 

Figure 1.  Flowchart of our CPU+GPU implementation. 
 
 

Kernel 4 is designed to transpose the X’  matrix in 
GPU’s shared memory by using Ceiling(L’/16) 

Ceiling(K’/16) blocks, each with 1616 threads for the 
parallel swapping in symmetric elements about the 
diagonal (NVIDIA, 2011b). 

E. Kernel 5: matrix multiplication 

The multiplication of the X’ and X’t matrices is 
implemented in Kernel 5 using Ceiling(L’/16) 

Ceiling(K’/16) and Ceiling(K’/16)Ceiling(L’/16) blocks, 
each with 1616 threads respectively, following the 
computational notations in matrix multiplication. Figure 
2 shows the schematic model for the multiplication of a 
matrix A (64128) and its transpose matrix B (12864) 
and the resulting matrix C (6464), using sub-blocks of 
1616 threads in parallel computation. 

 

 
 

Figure 2. Scheme for parallel matrix multiplication. 

The computation of the L’L’ covariance matrix Cx 
of the L-band imagery is then a combination of Kernels 4, 
5, and 3 (with constant value of K-1) in the GPU device. 
The solution for the eigenvalues of Cx is currently done in 
serial CPU model by applying QR decomposition 
(Francis, 1961; Burden & Faires, 2011), followed by a 
quicksort (Hoare, 1962) in descending order. The 
eigenvectors for the first P (≦L) bands are also solved in 
CPU host for compositing a PL’ transformation matrix 
G. The selected P-band component of G matrix is then 
mapped onto the GPU device for linear transformation in 
Eq. (1) using Kernel 5, followed by a linear contrast 
stretch in Eq. (8) using Kernels 3 and 2. 
 

4. EXPERIMENTAL RESULTS 

The programs were developed using Microsoft Visual 
C++ and CUDA v4.1 under Microsoft Windows 7 64bits 
environment. In addition to the CPU+GPU coprocessing 
programs for PCT, the counterpart codes for CPU serial 
operations are also implemented for performance 
comparison in an ASUS ESC1000 computer with 
hardware specificity shown in Table 1. A 191-band, in 
the size of 1280307, 16-bit HYDICE image of 
Washington DC Mall from Purdue University (https:// 
engineering.purdue.edu/~biehl/MultiSpec/) was used in 
the experiment. 

The performances of our CPU+GPU parallelization 
and CPU serial process on PCT are shown in Table 2. 
The parallelization on the key steps A, B, and D can get 
speedup of up to 86, 58, and 94, respectively, with 
overall speedup of 30, compared to the CPU-based 
process. The transformed images from both CPU+GPU 
parallelization and CPU serial process were also 
examined with the root-mean-squared error, correlation 
coefficient, and mean absolute error, using the result from 
the CPU serial process as reference. It is shown that 
corresponding bands from both processes are identical 
due to unique eigenvectors solved in the same routines. 
 

5. CONCLUSIONS 

This research adapts NVIDIA’s Compute Unified 
Device Architecture (CUDA) in designing CPU+GPU 
parallelized programs for principal components 
transformation (PCT), and compares the computational 
efficiency with the counterpart CPU single-thread 
programs. We focused on the parallelization of basic 
arithmetic and matrix operations in PCT. A 191-band  
1280307 HYDICE hyperspectral image was used in the 
experiments for illustrating that the CPU+GPU approach 
accelerates PCT operation in an overall speedup of 30 
through the parallel computing capability of GPU. 
Individual parallelized steps may get speedup of up to 
86, 58, and 94 for computing mean vectors, 
covariance matrix, and linear transformation, respectively. 
The concept in parallelism of basic operations is 
anticipated for near real-time high performance 
processing of volumetric image data in remote sensing 
applications. 



 

Table 1. Hardware specification in the experiment. 

Item CPU GPU 

Brand/Model Intel Xeon W3530 NVIDIA Tesla C0270

Number of Cores 6 448 

Core Frequency 2.8 GHz 1.15 GHz 

Memory 24576 MB DDR3 2688 MB GDDR5 

Memory Bandwidth 25.6 GB/s 144 GB/s 

 

Table 2. Performance comparison on HYDICE imagery. 

Step Computations 
CPU 
(sec) 

GPU 
(sec) 

Speedup

A Mean vector 1.732 0.020 86.60

B Covariance matrix 72.097 1.225 58.86

C Eigenvalues & eigenvectors 0.107 0.112* - 

D 
Transformation of the first 16 
PCs with contrast stretch 

8.681 0.092 94.36

 Memory mapping & others 0.101 1.254 - 

Overall  82.718 2.703 30.60
* : executed on CPU with time for memory mapping between host and 
device 
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